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Abstract A formal derivation of the nuclear-ensemble

method for absorption and emission spectrum simulations

is presented. It includes discussions of the main approxi-

mations employed in the method and derivations of new

features aiming at further developments. Additionally, a

method for spectrum decomposition is proposed and

implemented. The method is designed to provide absolute

contributions of different classes of states (localized, dif-

fuse, charge-transfer, delocalized) to each spectral band.

The methods for spectrum simulation and decomposition

are applied to the investigation of UV absorption of ben-

zene, furan, and 2-phenylfuran, and of fluorescence of

2-phenylfuran.

Keywords Electronic spectrum � Absorption �
Fluorescence � Spectrum simulation � Excimer �
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1 Introduction

Visible and ultraviolet spectroscopy is a central technique

for general material characterization. Its fundamental role

is still enhanced when dealing with photo-active molecules

employed in photo-receptors, light emitters and photovol-

taics. From the theoretical standpoint, the characterization

of the electronic spectrum of molecules is often restricted

to characterization of vertical transitions and their energies

and transition dipole moments. This procedure greatly aids

the assignment of measured spectra, but is far from rep-

resenting its complexity. Full spectrum simulation, beyond

simple vertical-lines computation, is a much more involved

task, demanding non-routine and computationally costly

procedures, such as propagation of excited-state nuclear

wave packets or determination of Franck–Condon factors

[1, 2]. In general, such simulations are strongly limited in

terms of nuclear degrees of freedom or number of elec-

tronic states considered. They are also non-black-box

procedures, which require high degree of specialization to

be conducted, precluding them of being adopted as routine

procedures for researchers out of the computational-

chemistry field.

Recently, there have been efforts to develop general

methods for spectrum simulation more accessible to the

quantum-chemical community and aiming at large mole-

cules. Examples of such developments are the implemen-

tation of the Tannor–Heller method [3, 4] in the ORCA

program, which allows computing vibrational progressions,

and of the quadratic-coupling expansion in Gaussian,

which allows computing vibrational progressions and dark

vibronic bands [5]. Moreover, spectrum simulations based

on excitation of an ensemble of nuclear geometries have

become popular [6–8]. This kind of approach is based on

the hypothesis that the spectral band shape is determined
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by the ground-state nuclear-geometry distribution. When

this hypothesis is approximately fulfilled, the nuclear-

ensemble approach can provide good estimates for several

spectral features, including vibrational broadening of short

lived states, dark vibronic bands, and absolute spectral

intensities. Additionally, the nuclear-ensemble approach

includes all degrees of freedom and can be extended to

large number of excited states. The conceptual simplicity

and relative low computational cost makes the nuclear-

ensemble approach ideal for routine simulations. The

nuclear-ensemble approach, however, has a number of

handicaps, namely (1) it depends on arbitrary parameters;

(2) it cannot properly predict vibrational broadening of

long-lived states; (3) it cannot predict vibrational progres-

sions; and (4) it does not properly take into account vib-

ronic features of the energy gap of the spectral lines.

The origin of each element composing the nuclear-

ensemble approach can be traced back to decades ago, first

with the works of Heller, Wilson and others in the 1980s,

where absorption bands were computed based on molecular

dynamics [9]. It is also influenced by the works of Skinner

[10], which provided a useful link between Kubo’s sto-

chastic theory of the line shape [11] and molecular

dynamics, and by the reflection principle [12], which

approaches bound to continuum transitions from the

nuclear-ensemble perspective. The intuitive character of

the nuclear-ensemble approach has created a situation

where although the method is frequently employed, there is

no clear derivation of its formalism. This information gap

makes difficult to understand the reasons for its limitations

and to propose ways to improve the method. In this con-

tribution, we derive equations for absorption cross sections

and radiative decay rates based on the nuclear-ensemble

method. The main approximations are made explicit, and

improvements on the method are proposed, in particular

ways to get rid of arbitrary parameters.

One of the advantages of the nuclear-ensemble approach

is that it provides straightforward ways to analyze different

contributions summing up to the full spectrum. For

instance, in Ref. [7], the UV absorption spectra of nucle-

obases have been decomposed in terms of their several

diabatic contributions. In Ref. [13], the absorption spec-

trum of Cr(CO)6 has been decomposed in terms of sym-

metry contributions. In Ref. [14], the spectrum of urocanic

acid has been decomposed in terms of isomeric contribu-

tions. In all these cases, the spectral decomposition helped

to reveal the character of states forming the several bands.

In the present work, we develop a new way to perform

spectral decomposition analysis, now, based on the elec-

tronic-density distribution of the states. This approach

allows characterizing the contributions of localized states,

charge-transfer states, diffuse states and excimer states to

each band.

Another advantage of the nuclear-ensemble approach is

that it is naturally a post-Condon approximation. Because

the transition moments are evaluated for geometries dis-

placed from equilibrium position, vibronic contributions to

the spectrum are computed without need of Herzberg–

Teller type of expansions [5]. Thus, even dark vibronic

bands are described by the simulations [15].

Often in the literature, computed vertical excitations are

compared to experimental band maxima. Although this is a

valid procedure to provide assignments and to check the

overall quality of theoretical method, it can also be mis-

leading, when one does not take into account that the band

maximum is normally red-shifted in relation to the vertical

excitation. The spectrum simulation allows computing the

shift between these two quantities. This shift is used to

estimate the experimental value of the vertical excitation,

which is a more appropriate quantity to have the theoretical

data compared with.

To illustrate several of these methodological features,

we have investigated the absorption and emission spectra

of 2-phenylfuran and of its constituent monomers, benzene

and furan (Fig. 1). A series of features lead us to this

particular choice of molecules for our benchmark investi-

gations. First, a good deal of experimental and theoretical

data is available for all three molecules. Second, all three

molecules are small enough to have their spectra simulated

with even more accurate (and costly) methods than the

nuclear-ensemble approach, allowing methodological

comparisons. Third, there is an interesting physical chem-

istry associated with these molecules: While benzene and

furan are non-fluorescent species, 2-phenylfuran is fluo-

rescent [16].

2 Derivation of the nuclear-ensemble method

2.1 Absorption cross section

With the formalism of the time-dependent perturbation

theory for interaction between an electron and the classical

radiation field, within the electric dipole and Born–

Oppenheimer approximations, the isotropic absorption

cross section is given by [17]

O O

benzene furan 2-phenylfuran

Fig. 1 Illustration of benzene, furan and 2-phenylfuran
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where E is the photon energy of the probe radiation, e0 is

the vacuum permittivity, c is the speed of light, nr is the

refractive index of the medium, and l is the dipole

operator. The sum runs over the final electronic states n and

vibrational states k. The molecule is supposed to be

initially in the electronic and vibrational ground state. The

electronic and nuclear wavefunctions are represented by /
and v, respectively. The d function selects the resonant

frequency between the initial and the final states. The ket

indexes indicate the integration coordinates, r for

electronic and R for nuclear. The resonance occurs for

DE00;nk ¼ Enk � E00 þ DE0;n; ð2Þ

where DE0,n is the vertical excitation energy and E00 and

Enk are the vibrational energies of the ground and excited

states.

The cross section can be recast in the time domain as [3]

r Eð Þ ¼ 1

6�h2ce0nrE

X

n

Re

Z
DE2

0;n Rð ÞM2
0n Rð Þ

�
Z

v�00 Rð Þvn R; tð Þei EþE00ð Þt=�hdt

� �
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where M0n is the electronic transition dipole moment given

by

M0n Rð Þ ¼ /0h jle r; Rð Þ /nj ir ð4Þ

and where the following approximation was employed

DE0;n � DE00;nk

� �
k
: ð5Þ

The term between brackets in Eq. (3) is the inverse

Fourier transform of the overlap between the ground-state

nuclear wavefunction and the wave packet vn tð Þj i given by

the operation of the excited-state Hamiltonian Hn on the

ground-state wavefunction:

vn tð Þj i ¼ e�iHnt=�h v00j i: ð6Þ

The extinction coefficient e for photoabsorption (in

L mol-1 cm-1) can be written in terms of the absorption

cross section r (in cm2) as

e ¼ 10�3NA

ln 10ð Þ r; ð7Þ

where NA is the Avogadro constant.

The core of the method is to compute the overlap

functions

u R; tð Þ ¼ v�00 Rð Þvn R; tð Þ; ð8Þ

which are needed to integrate Eq. (3). In the Tannor–Heller

approach [3], for instance, the computation of the overlap

function is done within the Condon approximation

employing harmonic oscillator wavefunctions. For the

nuclear-ensemble approaches explored in the present work,

which goes beyond the Condon approximation, we proceed

without explicit computation of overlap functions. In the

next sections, two phenomenological models for the overlap

function are discussed. These models, however, depend on

arbitrary parameters. In Sect. 2.3, we discuss how to get rid of

these parameters. Although the results discussed here are

restricted to these two models, the derivation itself is rather

general and can be adapted to other choices of overlap

functions, including explicitly computed overlap functions

obtained from wave packet propagation.

2.2 Overlap function: approximation 1

To get the result discussed in Ref. [7], the overlap function

is approximated by

v�00 Rð Þvn R; tð Þ

¼ v00 Rð Þj j2exp � dn

2�h
tj j � i

�h
DE0;n Rð Þt � i

�h
E00 Rð Þt

� �
;

ð9Þ

where dn is a parameter associated with the lifetime of state

n. Inserting Eq. (9) in Eq. (3) and performing the

integration over t result in

r Eð Þ ¼ p�he2

2mce0nrE

X

n

Z
v00 Rð Þj j2DE0;n Rð Þf0n Rð Þ

� gLorentz E � DE0;n Rð Þ; dn

� �
dR: ð10Þ

where e and m are the electron charge and mass. For

convenience, the transition dipole moment has been

expressed in terms of oscillator strengths [18]:

M2
0n ¼

3�h2e2

2mDE0;n
f0n: ð11Þ

In Eq. (10), gLorentz is a normalized Lorentzian line shape

given by

gLorentz E � DE0;n; dn

� �
¼ 1

p
dn=2

E � DE0;n Rð Þ
� �2þ dn=2ð Þ2

:

ð12Þ

2.3 Overlap function: approximation 2

In the harmonic approximation, neglecting Duschinksky

effects and frequency shifts between the ground and exci-

ted states, the nuclear wavefunction overlap (integrated

over R) can be written as [3]
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where sum runs over all normal modes j with frequency xj.

Dnj (dimensionless) is the component along normal mode

j of the displacement vector between the ground- and

excited-state equilibrium positions. DE0,n
a is the energy

difference between the minima of the excited state n and of

the ground state. By expanding the exponential term in the

exponential argument in a power series of t, we see that the

first non-imaginary term in the equation above is

proportional to t2. The equation including all terms until

the second order becomes

v00 j vn tð Þh i � exp

"
�i

1

2

X

j

D2
nj þ 1

	 

xj þ xa

0n

 !
t

� 1

2

X

j

D2
njx

2
j

 !
t2

#
: ð14Þ

Since the non-imaginary terms are actually those

responsible for the line width, Eq. (14) motivates a new

functional form for the overlap function:

v�00vn R; tð Þ ¼ v00 Rð Þj j2exp

"
� i

�h
DE0;n Rð Þt � i

�h
ent

� i

�h
E00t � 1

8�h2
d2

nt2

#
: ð15Þ

As we shall see, Eq. (14) is obtained from Eq. (15) under

the condition that DE0;n Rð Þ is approximately constant

over R.

Inserting Eq. (15) in Eq. (3) and integrating over t leads

to

r Eð Þ ¼ p�he2

2mce0nrE

X

n

Z
v00 Rð Þj j2DE0;n Rð Þf0n Rð Þ

� gGauss E � DE0;n Rð Þ � en Rð Þ; dn

� �
dR; ð16Þ

which, different from the previous result, Eq. (10), has

normalized Gaussian line shapes

gGauss E � DE0;n Rð Þ þ en Rð Þ; dn

� �

¼ 1

2p dn=2ð Þ2
	 
1=2

exp
� E � DE0;n Rð Þ � en

� �2

2 dn=2ð Þ2

 !

ð17Þ

instead of Lorentzian line shapes and includes vibronic

shifts through the en term.

Another difference regarding the comparison between

Eqs. (10) and (16) is that this second approximation for the

overlap function gives us a direct way to determine the

parameters dn and en. Although we will not investigate

state-specific line widths and vibronic shifts in the simu-

lations discussed in this work, for completeness of the

derivation, it is worth showing how these parameters can

be computed. If DE0;n Rð Þ is approximately constant over

R, then dn and en in Eq. (15) can be obtained by compar-

ison with Eq. (14) and be defined in terms of and of xj, Dnj,

and dE0;n ¼ DE0;n � DEa
0;n as:

en ¼
�h

2

X

j

D2
njxj � dE0;n; ð18Þ

dn ¼ 2�h
X

j

D2
njx

2
j

 !1=2

: ð19Þ

Still in the harmonic approximation without Duschinsky

rotation or frequency shifts, these quantities are simply (see

details in the Online Resource 1)

en ¼ �
1

2

X

j

G2
nj

ljx
2
j

¼ � 1

2
dE0;n; ð20Þ

dn ¼ 2 �h
X

j

G2
nj

ljxj

 !1=2

; ð21Þ

where

Gnj ¼
dEn

dqj

����
qj¼0

ð22Þ

is the excited-state potential energy gradient evaluated at

the ground-state minimum geometry with respect to the

ground-state normal coordinates q.

2.4 Nuclear-ensemble approximation

The integrals on R in Eqs. (10) and (16) can be com-

puted employing a Monte Carlo procedure sampling Np

random Rlvalues according to the distribution v00 Rlð Þj j2
[19]:

r Eð Þ ¼ pe2�h

2mce0nrE

XNfs

n

1

Np

XNp

l

DE0;n Rlð Þf0n Rlð Þ

� g E � DE Rlð Þ; dnð Þ: ð23Þ

In this equation, g is a normalized Lorentzian line shape

centered at DE ¼ DE0;n for the integration of Eq. (10)

and a normalized Gaussian line shape centered at DE ¼
DE0;n þ en for integration of Eq. (16). Note that the sum

over the states was restricted to a number Nfs of final

states.
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A convenient way of sampling the ground-state density

at time zero is to suppose that the harmonic approximation

is valid and to employ a Wigner distribution

v00 qð Þj j2¼
Y3N�6

j¼1

ljxj

p�h

	 
1=2

exp �ljxjq
2
j =�h

	 

: ð24Þ

Using a stochastic algorithm, an ensemble of Np normal

coordinates qlf g (l = 1 - Np) can be generated according

to the Wigner distribution and converted into an ensemble

of Cartesian geometries Rlf g. Alternatively, a ground-state

ensemble Rlf g can also be generated by trajectories

simulations in the ground state. In this case, however,

one should care that the kinetic energy in the internal

vibrational degrees is high enough as to provide the zero-

point energy for each degree of freedom. As discussed in

Ref. [20], when the vibrational temperature is properly

taken into account, Wigner and trajectory samplings tend

to produce equivalent results. Either way, after having an

ensemble of geometries distributed according to v00 Rð Þj j2,

and DE0;n and f0n computed for each geometry in the

ensemble, r(E) can be evaluated using Eq. (23).

The error in the cross section due to the statistical

sampling can be estimated by

dr Eð Þ’ pe2�h

2mce0nrE

XNfs

n

1

N
1=2
p Np�1
� �1=2

�
"
XNp

l

DE0n Rlð Þf0n Rlð Þg E�DE0;n Rlð Þ;dn

� �
� snh i

� �2

#1=2

;

ð25Þ

where

snh i ¼
1

Np

XNp

l0
DE0n Rl0ð Þf0n Rl0ð Þg E � DE0;n Rl0ð Þ; dn

� �
:

ð26Þ

2.5 Emission spectrum

The differential rate for radiative emission (dimensionless)

is given by [2, 21]

Crad Eð Þ ¼ n3
r

3p�h3c3e0

�
X

k;m

qT
k

Z
DE1k;0m Rð Þ3

��v�0m Rð Þ

� /0h jl r;Rð Þ /1j irv1k Rð Þj2d E � DE1k;0m Rð ÞÞdR;
�

ð27Þ

where the emission is supposed to occur from the kth

vibrational state of the first-excited electronic state, into the

mth vibrational state of the ground electronic state. At a

certain temperature T, state k is populated according to the

Boltzmann distribution

qT
k ¼

e� E1k�E10ð Þ=kBT

P
k0 e
� E1k0�E10ð Þ=kBT

: ð28Þ

Following Ref. [21], we have adopted an empirical nr
3

dependence of the differential emission rate on the

refractive index. Since the final emission rate should also

take into account the dependence on the absorption

intensity, which depends itself on nr
-1, the final emission

rate should bear an nr
2 dependence, as experimentally

observed [22].

In the time domain, the differential emission rate

becomes

Crad Eð Þ ¼ n3
r

6p2�h3c3e0

Re

Z
DE1;0 Rð Þ3M2

01 Rð Þ

�
"
X

k

qT
k

Z
v�1k Rð Þv0 R; tð Þei E1k�Eð Þt=�hdt

#
dR;

ð29Þ

where the following approximation was employed

DE1;0 � DE1k;0m

� �
k;m
: ð30Þ

Now, the wave packet is given by operating the ground-

state Hamiltonian H0 on the excited-state wavefunction:

v0 tð Þj i ¼ e�iH0t=�h v1kj i: ð31Þ

With an overlap-function approximation similar to the

first approximation discussed above for absorption,

v�1k Rð Þv0 R; tð Þ ¼ v1k Rlð Þj j2

� exp

"
�an Rð Þ tj j þ ix01 Rð Þt � ix1k Rð Þt

#
;

ð32Þ

we obtain

Crad Eð Þ ¼ e2n3
r

2p�hmc3e0

Z X

k

qT
k v1k Rð Þj j2

" #

� DE1;0 Rð Þ2 f10 Rð Þj jgLorentz E � DE1;0 Rð Þ; d
� �

dR: ð33Þ

This last expression can be integrated with a Monte

Carlo procedure:

Crad Eð Þ ¼ e2n3
r

2p�hmc3e0

1

Np

XNp

l

DE1;0 Rlð Þ2 f10 Rlð Þj j

� gLorentz

�
E � DE1;0 Rlð Þ; d

�
; ð34Þ

where Np random Rl points are sampled according to

the
P

k qT
k v1k Rlð Þj j2 distribution. Within the harmonic

approximation, the density of the nuclear ensemble is
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simply given by the Wigner distribution for a specific

temperature T [23]:
X

k

qT
k v1k qð Þj j2 ¼ vT

10 qð Þ
�� ��2

¼
Y3N�6

j¼1

l1
j x

1
j

2p�h sinh �hx1
j =kBT

	 


0
@

1
A

1=2

� exp �
l1

j x
1
j

�h
q2

j tanh
�hx1

j

2kBT

 ! !
;

ð35Þ

where lj
1 and xj

1 refer to reduced masses and angular fre-

quencies of the electronic excited state.

The quantity Crad expresses the rate of spontaneous

emission per molecule per unit of angular frequency

between E=�h and E þ dEð Þ=�h [2]. For a single fluorescence

band, in the absence of non-radiative processes, the radi-

ative decay rate (jrad) and the maximum lifetime (s0) are

given by

jrad ¼ 1=s0 ¼
1

�h

Z
Crad Eð ÞdE: ð36Þ

2.6 Comments on the line shapes

Usually, the discussion on the line shape of the broad-

ening of spectroscopic lines is made in terms of homo-

geneous and inhomogeneous broadening [2, 10].

Lorentzian line shapes are associated with homogeneous

broadening caused by the natural lifetime of the lines,

while Gaussian line shapes are associated with inhomo-

geneous broadening caused by thermodynamics events

like collisions. In the derivation of the nuclear-ensemble

method, we have seen that the Lorentzian and Gaussian

line shapes were directly connected to the time depen-

dence of the vibrational overlap function. While the

exponential decay (Eq. 9) resulted in a Lorentzian line

shape, a Gaussian decay (Eq. 15) resulted in a Gaussian

line shape.

We can also relate these two approximations through

the stochastic theory of the line shape developed by Kubo

[11] and applied to molecular line shapes by Saven and

Skinner [10]. As shown by Kubo, the overlap function

given by Eq. (13) is a general result for a Gaussian-dis-

tributed random variable in a Markovian process [11]. In

the limit of a very slow decay of the time-correlation

function of this random variable, the overlap function

reduces to Eq. (9) and the line has a Lorentzian shape. In

the limit of a very fast decay of the time-correlation

function, the overlap function reduces to Eq. (15) and the

line has a Gaussian shape. Employing molecular dynam-

ics simulations of chromophores within non-polar fluids,

Saven and Skinner [10] showed that Kubo’s model works

well in these two limits, but cannot produce accurate line

shapes in intermediary regimes. They also found out that

inhomogeneous broadening (Gaussian lines) dominates

the line shapes, unless the spectra are measured at very

low temperature.

Although in practical terms, the difference between

spectra computed with Eq. (23) employing Lorentzian or

Gaussian line shapes is minimal, Gaussian line shapes lend

a more physical interpretation to the simulations. When the

molecule absorbs a photon, the excited wave packet should

accelerate out of the Franck–Condon region [24]. Thus, the

overlap function should change slowly initially, as

expressed by a Gaussian overlap function. Moreover, as we

have seen, the line width is proportional to the energy

gradient at the Franck–Condon region (Eq. 21). When the

gradient is small, the excited wave packet remains in the

Franck–Condon region for a long time, resulting in a nar-

row spectral line, like those often observed for Rydberg

states. When the energy gradient is large, the wave packet

moves quickly out of the Franck–Condon region, creating

broad bands, like those typically observed in pp*

excitations.

In the case of molecules holding conical intersections

between excited states, the wave packet will quickly pop-

ulate different states due to the non-adiabatic transitions

[25]. Part of this effect is captured by the nuclear-ensemble

approach because it populates different states according to

their diabatic features (which are determined by the tran-

sition dipole moments). But the contribution of the non-

adiabatic phenomenon itself for the population of different

states is not accounted at all with the overlap functions

proposed in the previous sections.

3 Spectrum decomposition

In a system composed of various molecular units, it is of

general interest to know how, for a specific electronic

state, the electronic density is distributed among the units.

Here, we will considerer systems composed of two

molecular units, but the generalization for a larger number

of units is straightforward. The aim is to implement an

automatic analysis algorithm, which can be applied for

every electronic state, for each point in the nuclear

ensemble, and that returns the state classification in terms

of pre-established classes. These classes are (1) local

excitation within unit A; (2) local excitation within unit B;

(3) delocalized excitation (excimer) involving A and B;

(4) diffuse excitation (Rydberg) involving A and B; (5)

charge transfer from A to B; and (6) charge transfer from

B to A.
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We start by expressing the excited-state electronic

wavefunction WI for state I as a singly excited configura-

tion interaction wavefunction (CIS)

WI ¼
X

i!j

CI
i!jUi!j; ð37Þ

where Ui!j is a Slater determinant for single excitation

from molecular orbital wi into molecular orbital wj. In the

case of electronic states computed with TD-DFT approach,

the CI coefficients CI
i!j are given by the time-dependent

amplitudes, while the molecular orbitals are given by

Kohn–Sham orbitals.

If the ground state can be represented by a restricted

closed shell determinant, the density difference between

state I and the ground state is given by (after integrating

over the electron coordinates)

DPI0 � PI � P0 ¼
X

i!j

CI
i!j

	 
2X

lm

cljcmj � clicmi

� �
Slm

�
X

i!j

CI
i!j

	 
2

q j � qi
� �

;

ð38Þ

where Slm � /l

� ��/mi is the overlap integral elements

between basis functions /l, and /m and cla are the

molecular-orbital coefficients for orbital a and basis func-

tion. (Detailed derivation of Eq. (38) is given in the Online

Resource 1.)

If the molecular system is split in two units A and B,

DPI0 can be partitioned between basis functions centered in

atoms belonging to unit A and atoms belonging to unit B:

DPI0 ¼
X

i!j

CI
i!j

	 
2

"
X

l2A;m2A

cljcmj � clicmi

� �
Slm

þ
X

l2B;m2B

cljcmj � clicmi

� �
Slm

þ 2
X

l2A;m2B

cljcmj � clicmi

� �
Slm

#

�
X

i!j

CI
i!j

	 
2

"
q j

AA � qi
AA

� �
þ q j

BB � qi
BB

� �

þ 2 q j
AB � qi

AB

� �
#
: ð39Þ

The distribution of the qAB
k electronic density between

the molecular units can be done employing standard

schemes for the calculation of atomic charges [26]. Here,

we employ the simplest approach, the Mulliken partition,

where qAB
k is distributed equally between A and B. In spite

of the well-known handicaps of this partition scheme, it

serves well our purposes of qualitatively assigning a large

number of electronic states. Employing the Mulliken

partition, Eq. (39) is recast as

DPI0 ¼
X

i!j

CI
i!j

	 
2
�

q j
AA þ q j

AB � qi
AA � qi

AB

� �

þ q j
BB þ q j

AB � qi
BB � qi

AB

� ��

¼
X

i!j

CI
i!j

	 
2

q j
A � qi

A

� �
þ q j

B � qi
B

� ��
; ð40Þ

�

where

qk
A � qk

AA þ qk
AB;

qk
B � qk

BB þ qk
AB

ð41Þ

with k = i, j.

In the case of Rydberg orbitals, this partition of the

electronic density may not work well because of their very

diffuse character. Therefore, the first step in the classifi-

cation of the electronic states is to detect transitions into

Rydberg orbitals. In some particular cases, the detection of

these orbitals can be simply done by monitoring the

quantity 2q j
AB=ðq

j
AA þ q j

BBÞ. (See Online Resource 1 for a

discussion on this point.) After detecting the Rydberg

orbitals, their contribution to each state I is computed by

cR ¼
P

m ðCI
mÞ

2
, with m running over all transition where j

is a Rydberg orbital. If cR is equal or larger than a certain

threshold tR, then state I is classified as a diffuse (Rydberg)

state.

If cR \ tR, the charge transfer is calculated. Because

DPI0 ¼ 0, all change of density in unit A in Eq. (40) must

correspond to a complementary change in unit B. There-

fore, to obtain the amount of charge transfer between the

two units, it is enough to compute the quantity:

TCTI
A ¼

X

i!j

CI
i!j

	 
2

q j
A � qi

A

� �
; ð42Þ

where transitions into Rydberg states are excluded from the

summation. If TCTI
A [ tCT, state I is classified as a charge

transfer from B to A. If TCTI
A\� tCT, the state is classified

as charge transfer from A to B. In both cases, tCT is a

positive threshold value.

If TCTI
A

�� ��� tCT, the electronic state can still be either a

localized state or a delocalized state (excimer). To distin-

guish between them, a third threshold value tL is used. For

each transition within state I, if qi
A=q

i
B	 tL, then the tran-

sition belongs to the sub-set mA. If qi
B=q

i
A	 tL, then the

transition belongs to a sub-set mB. The total localization of

state I within units A and B is evaluated as cA ¼
P

mA
CI

mA

	 
2

and cB ¼
P

mB
CI

mB

	 
2

, respectively. A last
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threshold, tD, is employed: if cA [ tD, state I is localized in

unit A; if cB [ tD, it is localized in unit B. In all other

cases, state I is classified as delocalized. The values of the

thresholds tR, tCT, tL, and tD are discussed below.

The method for spectrum decomposition proposed

above is certainly not unique, and other criteria and

threshold values could be invoked. Besides that, it depends

on the approximate validity of a few hypotheses. First, we

assume the adequacy of CIS wavefunctions to describe the

electronic density. Second, we also assume that the usage

of time-dependent DFT amplitudes together with Kohn–

Sham orbitals results in an acceptable representation of the

CIS wavefunction. Third, we assume that the density par-

tition among the units is uniquely defined, even though the

molecular orbitals (Kohn–Sham or Hartree–Fock) are not

unique and the Mulliken partition employed is somewhat

arbitrary. Due to all these factors, we should take the

decomposition as a qualitative analysis of the several

contributions to each band, rather than an exact numerical

analysis.

4 Computational details

Minimum-energy geometries of ground and excited states

were optimized at density functional theory (DFT) and

time-dependent functional theory (TDDFT) [27] levels.

The long-range corrected CAM-B3LYP functional [28]

was employed for most of calculations, since it provides a

good description of both localized and delocalized excita-

tions [29]. The aug-cc-pVDZ, aug-cc-pVTZ [30], def2-

TZVPP [31], and the TZVP ? mod basis sets were used.

The latter is the standard def2-TZVP basis set [31] with an

extra set of diffuse s and p functions on the heavy atoms.

The exponents of these extra Gaussian functions were

obtained as 1/3 of the most diffuse exponent of each kind.

Complementary calculations were performed with the

resolution-of-identity coupled-cluster to the second-order

method (RI-CC2) [32–34]. Cartesian coordinates are given

in the Online Resource 1.

Time-dependent functional theory electronic structure

calculations were performed with Gaussian 09 [35]. RI-

CC2 calculations were performed with Turbomole [36].

Spectra were simulated with the Newton-X program [37,

38] interfaced to Gaussian 09.

5 Vertical spectra

5.1 Vertical excitation of furan

Due to several reasons, including its small size, complex

spectrum mixing valence and Rydberg states, relation to

other pentacyclic molecules, and availability of gas-phase

experimental data, furan has been adopted as a benchmark

molecule for most of quantum-chemical methods. Good

comparative investigations involving diverse theoretical

methods are reported in Refs. [39, 40].

In Table 1, we report results for the vertical spectrum of

furan at TDDFT and RI-CC2. The multireference general-

model-space coupled-cluster (GMS CCSD) results from

Ref. [40] are given as well. The low-energy region of furan

vertical spectrum is dominated by the 1B2 pp* transition,

whose experimental maximum is at 6.04 eV [41]. In Sect.

6.1, we will see that the vertical excitation is placed by

0.15 eV higher than the band maximum. Applying this

same shift to the experimental result implies that the

‘‘experimental vertical excitation’’ should lie at 6.19 eV.

The TD-CAM-B3LYP results, red-shifted by only 0.06 eV

in relation to this estimate, are in very good agreement with

the experimental result. Both coupled-cluster results are

blue-shifted by more than 0.2 eV. This shift is due to the

intrinsic difficulty of Hartree–Fock-based methods (mul-

tireference or not) to describe the ionic V state [42].

5.2 Vertical excitation of benzene

The vertical spectrum of benzene is reported in Table 2.

Additionally to TDDFT and RI-CC2 results computed in

this work, the results of the symmetry adapted cluster

configuration interaction (SAC-CI) method from Ref. [43]

are reported for comparison as well.

The first state is a dark 1B2u pp* transition. Its experi-

mental value is 4.9 eV [44] at the band maximum. We

discuss later (Sect. 6.2) that the ‘‘experimental vertical

excitation’’ is at 5.07 eV. TD-CAM-B3LYP substantially

overestimates this transition, which lies at 5.50 eV for both

basis sets investigated. RI-CC2 result (5.25 eV) and,

especially, SAC-CI (5.06 eV) are in much better agreement

with the experiment. The next state, also dark, is a 1B1u

pp* transition. The ‘‘experimental vertical excitation’’ is at

6.53 eV in this case. RI-CC2 has the smallest deviation to

this value. SAC-CI and TD-CAM-B3LYP underestimate

the energy of this transition by more than 0.3 eV. The

experimental bright pp* transition (1E1u) is centered at

6.94 eV, with vertical excitation at 7.07 eV. TD-CAM-

B3LYP and RI-CC2 results are in very good agreement

with this value. SAC-CI result is blue-shifted by 0.4 eV.

All three Rydberg states for which experimental informa-

tion is available in Table 2 are well described by all

methods.

5.3 Vertical excitation and emission of 2-phenylfuran

The ground-state geometry of 2-phenylfuran was optimized

at B3LYP/TZVPP and CC2/TZVPP levels. Geometries
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calculated at both levels are similar. In particular, the

phenyl and furans rings are twisted with a dihedral angle

around 14� for both levels of theory.

The bright states of the vertical excitation spectrum of

2-phenylfuran in gas phase are reported in Table 3. The full

set of vertical transitions up to 7.4 eV is reported in Table

S1 of the Online Resource 1. The first two transitions are

into a bright and a dark excimer states at 4.66 and 4.98 eV,

respectively. The experimental band maximum in this

region is at 4.55 eV in hexanes [16] and at 4.44 eV in

methanol [45]. After a series of dark transitions into Ryd-

berg states, a second band is characterized by a local pp*

excitation within the benzene ring (5.98 eV) and a pp*

excitation delocalized over the whole molecule. A very

bright benzene-localized transition appears high in the

spectrum at 7.02 eV. A less intense transition at 7.38 eV

marks the fourth band.

The dependence of the vertical spectrum on the theo-

retical method can be accessed with the data of Table 3.

TD-CAM-B3LYP energy of the bright states computed

with aug-cc-pVDZ and aug-cc-pVTZ basis sets differs by

less than 0.03 eV, with systemically lower values when

using the triple-f basis set. RI-CC2 and TD-CAM-B3LYP

predict very consistent results for the spectrum as well. The

largest difference is observed in the lowest state, for which

CC2 result is 0.19 eV higher than that at TDDFT level. For

the other states, the energy difference is always smaller

than 0.08 eV.

Table 1 Vertical excitations of furan with different methods

TD-CAM-B3LYP RI-CC2 GMS CCSDa Expt.b Assignment

aug-cc-pVTZ TZVP ? mod aug-cc-pVTZ

DE (eV) f DE (eV) f DE (eV) f DE (eV) DE (eV)

A2 5.93 0.000 6.02 0.000 6.02 0.000 5.94 5.91 p–Ryd(s)

B2 6.13 0.167 6.13 0.164 6.41 0.186 6.51 6.04 (6.19)c p–p*

B1 6.44 0.037 6.56 0.041 6.55 0.038 6.46 6.47 p–Ryd(pyz)

A2 6.63 0.000 6.81 0.000 6.71 0.000 6.61 6.61 p–Ryd(pyz)

A1 6.97 0.000 6.97 0.000 6.75 0.000 6.89 p–p*

B1 7.12 0.001 7.32 0.002 7.23 0.003 7.14 p–Ryd(dyz)

A2 7.10 0.000 7.09 0.000 7.20 0.000 7.00 p–Ryd (pyz)

B2 7.11 0.008 7.07 0.005 7.21 0.004 6.87 6.75 p–p*

TDDFT results with the B3LYP/TVPP ground-state geometry. RICC2 results with CC2/TZVPP ground-state geometry. Bright states are shown

in bold face
a Ref. [40]
b Data reported in Ref. [39]
c ‘‘Experimental vertical excitation.’’ See text

Table 2 Vertical excitations of benzene with different methods

TD-CAM-B3LYP RI-CC2 SAC-CIa Expt.b Assignment

TZVP ? mod aug-cc-pVTZ aug-cc-pVTZ

DE (eV) f DE (eV) f DE (eV) f DE (eV) DE (eV)

B2u 5.50 0.000 5.50 0.000 5.25 0.000 5.06 4.90 (5.07)c p–p*

B1u 6.16 0.000 6.16 0.000 6.47 0.000 6.22 6.20 (6.53) p–p*

E1g 6.55 0.000 6.45 0.000 6.47 0.000 6.42 6.33 p–Ryd(s)

A2u 7.03 0.068 6.95 0.068 7.00 0.064 7.06 6.93 p–Ryd(pyz)

E1u 7.05 0.607 7.05 0.614 7.15 0.665 7.48 6.94 (7.07) p–p*

E2u 7.14 0.000 7.05 0.000 7.06 0.000 7.12 6.95 p–Ryd(pyz)

A1u 7.28 0.000 7.17 0.000 7.14 0.000 7.19 – p–Ryd(pyz)

TDDFT results with the B3LYP/TVPP ground-state geometry. RICC2 results with CC2/TZVPP ground-state geometry. Bright states are shown

in bold face
a Ref. [43]
b Band maxima as surveyed in Ref. [43]
c The values in parenthesis are the ‘‘experimental vertical excitations.’’ See text
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The geometry of the S1 state of 2-phenylfuran was

optimized at RI-CC2/TZVPP, TD-CAM-B3LYP/aug-cc-

pVDZ and TD-CAMB3LYP/aug-cc-pVTZ levels of the-

ory. The emission energy is given in Table 3 for these

levels. TDDFT geometries are planar, while the CC2

geometry holds a small degree of puckering at the bridge

carbon atom of the phenyl ring (CCCO dihedral = 11�).

The CC bridge is shorten from 1.45 Å in the ground state to

1.40 Å in the excited state.

For all cases, the S1 state corresponds to a delocalized

pp* transition with large absolute value of oscillator

strength. With the triple-f basis set, TDDFT vertical

emission energy is 3.99 eV, which is 0.05 eV higher than

the double-f result. Both results are in good agreement with

the band maximum, located at 3.97 eV [16]. The RI-CC2

result, 4.28 eV, is blue-shifted in comparison to the

experiment.

6 Spectrum simulations

6.1 Absorption spectrum of furan

Furan absorption cross section is shown in Fig. 2.

Absorption was computed with Eq. (23), and the parame-

ters employed in the simulations are given in Table 4.

Vibronic shifts were set to zero, and all lines were assumed

to have the same width dn. Eight excited states for each one

of the 350 ensemble points were computed. The gray area

indicates the error in the numerical integration computed

with Eq. (25).

The experimental data, also in gas phase, is from Ref.

[41]. In the region below 7 eV, furan shows a series of

Rydberg states over-imposed to a broad band. The nuclear-

ensemble method provides a good qualitative prediction of

the spectrum. The intensity and the shape of the broad band

are in very good agreement with the experiment. The

energy shift is caused by the electronic structure method

(see Sect. 5.1), rather than by the spectrum simulation

method itself.

The broad band is due to the bright pp* state. The

maximum of this band in the simulated spectrum is at

5.98 eV, slightly red-shifted in comparison with the

experimental result, 6.04 eV [41]. The corresponding ver-

tical excitation is the 11B2 transition (see Table 1), which

Table 3 Bright vertical excitations and emission of 2-phenylfuran with different methods

Assignment TD-CAM-B3LYP RI-CC2 Expt.

aug-cc-pVDZ aug-cc-pVTZ

DE (eV) f DE (eV) f DE (eV) f DE (eV)

Absorption

p(PF)–p*(PF) 4.66 0.530 4.65 0.529 4.84 0.546 4.44a (4.54)c

4.55b (4.64)c

p(P)–p*(P) 5.98 0.092 5.96 0.089 5.96 0.085

p(PF)–p*(PF) 6.19 0.107 6.16 0.116 6.08 0.080

p(P)–p*(P) 7.02 0.399 6.99 0.335 7.07 0.387

Emission

p(PF)–p*(PF) 3.94 -0.562 3.99 -0.559 4.28 -0.575 3.97b

TDDFT using B3LYP/TZVPP ground-state geometry. RI-CC2 absorption: aug-cc-pVTZ with CC2/TZVPP ground-state geometry. Emission:

S1-minimum geometry optimized at the same level as the reported single point
a Band maximum in methanol. Ref. [45]
b Band maximum in hexanes. Ref. [16]
c ‘‘Experimental vertical excitation.’’ See text
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Fig. 2 Simulated (TD-CAM-B3LYP/TZVP-mod) and experimental

absorption cross section of furan in gas phase. Experimental data from

Ref. [41]
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lies at 6.13 eV, therefore, 0.15 eV higher than the band

maximum. The sum of this shift to the experimental band

maximum defines the ‘‘experimental vertical excitation’’

shown in Table 1.

The two main limitations of the current implementation

of the nuclear-ensemble approach are clear in the simula-

tions for furan: First, the lack of vibrational resolution:

while the experimental results show a vibrational structure

near the maximum, the simulations predict only the enve-

lope of the band (the apparent oscillations are numerical

noise). Second, the wrong band width for long-lived states:

long-lived states give rise to very thin peaks in the spec-

trum, which are not correctly described in the simulations.

Both limitations are caused by the overlap-function

approximation (Eq. 15), which neglects the excited-state

wave packet evolution (see discussion in Sect. 2.6).

6.2 Absorption spectrum of benzene

The simulated and experimental results for the three bands

below 7 eV are shown in Fig. 3. The simulated absorption

spectrum was computed with Eq. (23) with numerical-

integration error (gray area) given by Eq. (25). Parameters

are given in Table 4. The vibronic shift en was assumed to

be zero. An estimate for this shift is discussed below.

Specific line widths were not computed, and all lines were

assumed to have the same width dn given in Table 4. The

number of excited states (up to 10) and the number of

points in the ensemble (up to 10,000) were set differently

for each region of the spectrum.

In the region below 7 eV, benzene absorbs in three

distinct bands. The first is a dark band around 5 eV; the

second is low-intensity band around 6.2 eV; and the third is

a bright band around 7 eV. Very high-resolution mea-

surements of the dark band along with a good review of

previous spectroscopic data for benzene can be found in

Ref. [46]. The UV absorption spectra of benzene vapor

over a large wavelength domain are available in Refs. [44,

47, 48]. For comparison with the present simulations, we

have taken the results from Ref. [44].

There is an overall good qualitative agreement between

the simulations and the experimental results (Fig. 3).

Absolute intensities are very well reproduced, especially if

we take into account that they span three orders of mag-

nitude over the three bands. Once more, vibrational reso-

lution and long-lived states (narrow peaks) are not

described. Besides that, the main deviations between the-

ory and experiment are the energy shifts observed in the

dark and in the intermediary bands. These shifts, however,

are not caused by the spectrum simulation itself, but they

are caused by the uncertainties of the electronic structure

method and level, in this case, the TD-CAM-B3LYP/

TZVP-mod, as we have discussed in Sect. 5.2.

Other source of band shift is vibronic corrections, but

they are much smaller than the shift caused by the elec-

tronic structure method. In the case of the first energy band

of benzene (Fig. 3-left), we can employ Eq. (20) to esti-

mate the vibronic shift. At TD-CAM-B3LYP/TZVP-mod

level, DE0;1 ¼ 5:548 eV and DEa
0;1 ¼ 5:421 eV, and there-

fore e1 ¼ �0:06 eV, which is much smaller than the shift

observed between theory and experiment in Fig. 3-left,

about -0.6 eV from maximum to maximum.

Table 4 Parameters employed for spectrum simulations in this work

dn (eV) Np Nfs nr

Absorption

Furan Fig. 2 0.05 350 8 1

Benzene Fig. 3-left 0.02 10,000 1 1

Benzene Fig. 3-center 0.02 10,000 4 1

Benzene Fig. 3-right 0.05 500 10 1

2-Phenylfuran Fig. 4-top 0.05 850 23 1.375

2-Phenylfuran Fig. 4-bottom 0.05 850 23 1.375

Emission (T = 0 K)

2-Phenylfuran Fig. 5 0.05 850 1 1

Absorption: Eq. (23) with Gaussian line shapes and en = 0.0 eV.

Emission: Eq. (34) with Lorentzian line shapes
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Fig. 3 Simulated (TD-CAM-B3LYP/TZVP-mod) and experimental absorption cross section of benzene vapor. Experimental data from Ref. [44]
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For each of the three bands, the comparison between the

simulated band maximum and the corresponding vertical

excitation is 0.17 eV for the first band (B2u), 0.33 eV for

the second band (B1u), and 0.13 eV for the third band (E1u).

These deviations were summed to the experimental band

centers to give the ‘‘experimental vertical excitations’’

shown in Table 2.

6.3 Absorption spectrum of 2-phenylfuran

The absorption cross section of 2-phenylfuran is shown in

Fig. 4. As for the previous cases, the simulated absorption

was computed with Eq. (23) with numerical-integration

error (gray area) given by Eq. (25). Parameters are given in

Table 4. Vibronic shifts were set to zero, and all lines were

assumed to have the same width dn. To cover the excita-

tion-energy domain under 7 eV, 23 excited states were

computed for each one of the 850 ensemble points. Note

that the number of points in the ensembles for furan (350),

benzene (500) and 2-phenylfuran (850) was chosen to be

proportional to the number of degrees of freedom of each

one of these molecules. The number of excited states was

chose in each case as the minimum necessary do describe

the spectrum up to 7 eV.

Experimental data for absorption of 2-phenylfuran were

reported in Ref. [16] in hexanes (also shown in Fig. 4-top)

and in Ref. [45] in methanol. Different from benzene and

furan, 2-phenylfuran absorbs with appreciable intensity

below 5 eV, with a band centered at 4.56 eV (expt.:

4.55 eV [16]). The simulations predict other two band of

similar intensity at 6.00 eV and 6.86 eV, and a less intense

band at 7.29 eV. The experimental result also indicates the

raise of a second band around 6 eV, but the information is

limited in this region. Overall, the simulated spectrum is in

good agreement with the experiment. Intensities are very

well reproduced, and the band shift is much smaller than in

the simulations of furan and benzene, probably by error

compensation due to the comparison between gas-phase

simulations and solvated experiments.

Another noticeable difference between the spectrum of

2-phenylfuran and that of the isolated monomers is the

intensity around 7 eV. While the absorption cross section

of benzene is very high in this region (2.5 Å2 molecule-1),

the absorption cross section of 2-phenylfuran is only about

1/3 of this value. This reduction in the absorption intensity

is a direct effect of the delocalization of the orbitals over

the whole molecule, reducing the transition moments.

Figure 4—bottom—shows the decomposition of the

spectrum of 2-phenylfuran in terms of the several classes of

states. The spectrum-decomposition method explained in

Sect. 3 was applied for each of the Np 9 Nfs = 19,550

lines composing the spectrum. The threshold values are

tR = 0.9, tCT = 0.6, tL = 0.8, and tD = 0.35. These values

were chosen after making a visual assignment of the states

at the ground-state geometry. Having the decomposition,

the spectrum for each class was recomputed with Eq. (23)

including only the transitions belonging to the respective

class, but still keeping the total Np value.

As expected, the lowest-energy band (4.56 eV) is due to

delocalized excitations involving both phenyl and furan

rings. Delocalized excitations are also the major contribu-

tions for the other two bands. In the case of the band at

6.00 eV, localized excitations within benzene ring are as

important as the delocalized states. In the third band

(6.86 eV), benzene-localized states and diffuse states give

minor contributions to the band. The fourth band (7.29 eV)

is mainly due to delocalized excitations with large contri-

butions of diffuse states. For the whole spectrum, local

excitations within the furan ring are negligible, while

charge-transfer states do not register in the scale of this

graph.

It is instructive to compare the vertical excitations pro-

vided in Table 3 and the bands show in Fig. 4. The bright

vertical excitation in the lowest band (S1: 4.66 eV) is

0.1 eV higher than the band maximum. This shift is sum-

med to the experimental band maximum to provide the

‘‘experimental vertical excitations’’ in Table 3 and in Table

S1 of the Online Resource 1. The delocalized pp* char-

acter of this vertical excitations is the same as the character
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Fig. 4 Top simulated (TD-CAM-B3LYP/aug-cc-pVDZ) and experi-

mental absorption cross section of 2-phenylfuran. Experimental data

in hexanes from Ref. [16]. Bottom Spectrum decomposition. CT
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of the whole band. The second band, whose corresponding

vertical excitations are S6 and S7, is centered exactly in

between the energies of these two states. While S6 is a

benzene-localized state, S7 is a delocalized state, which

corresponds to the two sub-bands revealed by the spectrum

decomposition shown in Fig. 4-bottom. The third band at

6.86 eV is related to the vertical excitation at 7.02. The

assignment in this case is not straightforward as for the

other two bands. The vertical excitation S17 is a benzene-

localized pp* excitation. The spectrum decomposition,

however, shows that the major contribution to this band

comes from delocalized excitations, with secondary con-

tributions from benzene-localized excitations. This differ-

ence occurs because the degree of localization depends on

the nuclear geometry, and for this specific state, this

quantity is very near the adopted threshold. For most of

points in the nuclear-ensemble, the degree of localization

was below the threshold tD = 0.35. Specifically for the

ground state minimum, this quantity was 0.36 (see cA in

Table S2 of the Online Resource 1), just enough to make

the transition to be classified as localized.

6.4 Emission spectrum of 2-phenylfuran

The simulated differential emission rate for 2-phenylfuran

computed with Eq. (34) is shown in Fig. 5, together with

experimental data from Ref. [16]. The simulated emission

was computed with Eq. (34). The numerical-integration

error (gray area) was computed with an expression similar

to Eq. (25), but for the differential emission rate. Param-

eters are given in Table 4. All lines were assumed to have

the same width dn. An ensemble of 850 points was built

around the minimum of the S1 state assuming T = 0 K.

Because the experimental data are given in arbitrary

units, in Fig. 5, it has been normalized to match the max-

imum intensity of the simulated spectrum. The fluores-

cence of 2-phenylfuran shows a single band. The maximum

of the simulated data occurs at 3.85 eV, while for the

experimental data, it is at 3.97 eV. In spite of the good

agreement between the theoretical and experimental

results, one can observe that the asymmetry of the exper-

imental band is not fully reproduced in the simulations.

Using Eq. (36), the maximum radiative lifetime is

s0 = 3.1 ± 0.2 ns. With the normalization adopted in

Fig. 5, the experimental value is s0 = 3.2 ns. This same

quantity is usually estimated based on the values of the

energy gap and oscillator strength obtained at the excited-

state minimum geometry RS1 minð Þ, where it is given by

1

s0

¼ e2n3
r

2p�h2mc3e0

DE1;0 RS1 minð Þ2 f01 RS1 minð Þj j: ð43Þ

Employing this last equation, which assumes the

validity of the Condon approximation, the lifetime is

2.6 ns (nr = 1), somewhat shorter than the value obtained

from the simulated spectrum.

7 Conclusions

Simulations of electronic spectra based on nuclear-

ensemble are an efficient approach for theoretical investi-

gations of large molecules, especially when post-Condon

features play a major role. The formal derivation of the

method presented in this work enhances the approxima-

tions employed in the method and allows proposing new

developments that will be explored in further works.

The nuclear-ensemble approach is especially well tai-

lored to investigate how different properties contribute to

each band in the spectrum. In particular, we have proposed

and implemented a method for spectrum decomposition in

terms of the contributions from different classes of states

(localized, delocalized, diffuse and charge-transfer).

Using the nuclear-ensemble approach, we have simu-

lated the absorption spectra of benzene, furan and

2-phenylfuran in gas phase. Based on these simulations,

‘‘experimental vertical excitations’’ were estimated. For

the three molecules, the main bands were assigned and

the spectrum-decomposition method was applied to

2-phenylfuran.

The absorption spectrum of 2-phenylfuran is composed

of four bands between 4.5 and 7.5 eV. The lowest band is

almost purely due to excimer states. The other bands are

still dominated by delocalized states, but with relevant

contributions from benzene-localized states and diffuse

states. Furan-localized and charge-transfer states play

a minor role in the absorption of 2-phenylfuran.

3.2 4.0 4.8
0

1

2

3

4
 Simulated
 Expt. Greco and Tor, 2007

Γ ra
d (

x1
07 )

Energy (eV)

Fig. 5 Simulated (TD-CAM-B3LYP/aug-cc-pVDZ) and experimen-

tal emission spectrum of 2-phenylfuran. Experimental data of Ref.

[16] normalized by the maximum of the simulated data
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The emission spectrum of 2-phenylfuran is characterized

by a single band centered at 3.9 eV and with a radiative

lifetime of 3.2 ns. This value, which is obtained by inte-

gration of the full emission spectrum, is larger than the

2.6 ns predicted by a usual Condon approximation.

Spectrum simulations were based on TDDFT with the

CAM-B3LYP functional. Methodological comparisons

with RI-CC2 and other methods showed that TD-CAM-

B3LYP have a very good performance for furan, 2-phen-

ylfuran and the bright band of benzene. Substantial energy

shifts, however, were observed for the dark bands of

benzene.
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